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This paper considers an axisymmetric numerical model developed in COMSOL Multiphysics for the simulation of the 
directional solidification of a melt in an idealized vertical Bridgman configuration. The solidification of the melt, including the 
convection and conduction heat transfer with mushy region phase change, is modeled using a slightly modified version of a 
method presented by Voller and Prakash [1]. Using different thermal conditions the model was applied for the study of the 
effect of the axial thermal gradients and the flow in the melt on the solid-liquid interface deflection and shape, during the 
solidification of InSb and respectively CaF2 melts. 
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1. Introduction 
 
The Bridgman growth process is one of the important 

methods for growing high quality II – VI and III – V 
semiconductors, halide and chalcogenide crystals, and a 
number of oxides for scintillation or laser applications [2]. 
In the vertical Bridgman technique the charge material is 
introduced in a crucible (ampoule) placed in a furnace; by 
heating the furnace and controlling a vertical (axial) 
thermal gradient the material is melted. The controlled 
solidification is obtained by cooling down the furnace, or 
by pulling down the crucible, or both. The Stockbarger 
variant uses a furnace made up of two heating elements 
separated by an adiabatic zone.  

 The most important process parameters in the 
vertical Bridgman method are i) the thermal properties of 
the furnace, and ii) the crucible design (shape and 
anisotropic properties of the ampoule material). The 
thermal properties of the furnace may be varied with time 
during the crystal growth and so the control of the crystal - 
melt interface shape and the growth rate can be difficult. It 
is known that the growth rate and the shape of the crystal – 
melt interface during the growth process influence the 
defect structure in the final crystal; for example, a flat or a 
slightly convex interface is desirable for growing single 
crystals with a low density of defects. In order to better 
understand how to control the shape of the solidification 
interface we can do experiments or we can perform 
numerical simulations. Because doing experiments could 
be time consuming and difficult, performing numerical 
simulations is a good choice for providing useful 
information for the system operation and design. Crystal 
growth is a transient process and its modeling requires the 
solution of a set of time-dependent partial differential 
equations. There are numerous computational studies 
devoted to the Bridgman crystal growth method, both in 
the steady-state approximation [3-9], and in the transient 
case [9-16]. We already proposed a steady-state model and 
obtained some numerical results for the coupled heat and 
fluid dynamics in the vertical Bridgman solidification of 
InSb [17]. In the present paper we extend our previous 

model by using a time dependent step type temperature 
distribution applied on the outer wall of the crucible, in a 
such a way that the actual model corresponds to a pseudo-
transient solidification. The influence of the thermal 
gradients, the flow in the melt and the pulling rate on the 
crystal-melt interface shape during the solidification of 
CaF2 and InSb is studied. Numerical calculations have 
been performed with the commercial finite element 
software COMSOL Multiphysics.    

 
 
2. Model description and implementation 
 
2.1 Growth configuration 
 
The geometrical configuration of the charge, crucible 

and furnace is shown in Fig. 1. In the axisymmetric model 
described here the cylindrical coordinate system has its 
origin at the center of the flat bottom of the crucible. The 
InSb charge is placed is a silica crucible (90 mm in length, 
having 5.5 mm inner radius and 6.5 mm outer radius). The 
crucible containing the CaF2 charge is made from a 
material as in Ref. [16], with the properties listed in             
Table 1.  

 
 

Fig. 1. Schematic diagram of the vertical Bridgman system. 
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The crucible is placed in an idealized Bridgman 

system with a three-zone furnace (Fig. 1): a gradient zone 
is located between a cold zone and a hot one, these ones 
being maintained at constant temperatures Tinf  and Tsup 
respectively. Solidification can be controlled by changing 
the furnace temperature distribution with time. For 
example, in our simulations we use a time dependent 
temperature distribution on the vertical outer boundary of 
the crucible that can be described by a smooth step 
function given by: 
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where t is the time, tvzz pullingm ⋅+= 0 , and vpulling is 
the pulling rate. The function 

);( zzzHeav m ∆− appearing in Eq. (1) is a smooth 
Heaviside function defined as: 
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such that z∆  is the half width of the gradient zone and 

mz  is the middle point of this interval. The temperature 
distribution given by Eq. (1) corresponds to a pseudo-
transient solidification. The thermal gradient is than given 
by )2/()( infsup zTT ∆− . In our simulations the initial 

position of the step profile in Eq. (1) is taken to be 0z = 

0.04 m and for the transition width z∆  we consider the 
values 0.01 m, 0.02 m, 0.03 m, and 0.04 m respectively. 
 

2.2 Governing equations 
 
2.2.1 Fluid flow 
 
The flow of the melt is modeled using the Navier-

Stokes equations for incompressible laminar flow: 
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In these equations u  denotes the velocity, ρ  the 
density,  p the pressure and η  the dynamic viscosity. As it 
will be described in the following sections the interface 
between the melt and the solid is treated by using an 
Eulerian approach in a fixed grid [1]. 

The source term F  in Eq. (3) includes the volumetric 
buoyancy force and an additional term used to model the 
solidification. The volumetric buoyancy force is written in 
the Boussinesq approximation: 
 

)()( refrefbuoyancy TTT −= gF βρ             (5) 

where β  is the volumetric thermal expansion coefficient, 

g  is the gravitational acceleration, and refT  is a reference 

temperature. The other additional term in F  will be 
detailed in the following section.  
 

2.2.2 Solidification  
 
The solidification model is based on that proposed 

initially by Voller and Prakash [1] and slightly modified 
by Marin [18]. In the modified model the heat equation is 
written in terms of temperatures rather than enthalpy, as in 
the original one: 
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where T is the temperature, k the thermal conductivity, and 
Cp the heat capacity. Equation (6) is valid for the solid 
crystal, the melt and also for the wall of the crucible 
(where the convection term is suppressed).  

A new feature of our model is to take into account the 
dependence of the density and thermal conductivity on the 
temperature, for the InSb and CaF2 charges, by using the 
following equations: 

 
 );()( TTTHeavT mSLS ∆−⋅−±= ρρρρ  (7) 
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where the subscripts S and L indicate the solid and liquid 
phases respectively, Tm is the melting point temperature, 
and T∆  is the half width of the temperature transition 
interval between the solid and liquid phases (i.e. 2 T∆  is 
the width of the mushy region). The function 

);( TTTHeav m ∆−  in Eqs. (7) and (8) is a smooth 
Heaviside function having the same analytical form as 
given in Eq. (2).  

To account for the latent heat related to the phase 
transition, in Eq. (6) we use a modified heat capacity: 
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where L is the latent heat of solidification and δ  is a 
smooth delta function taking into account that the latent 
heat is liberated only within the range 2 T∆  of the 
temperature, in the mushy region. For this δ  function we 
take the following Gaussian form: 
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The assumption of the solidification model proposed 

by Voller and Prakash is that the fluid flow in the 
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transition (mushy) region, during solidification, is similar 
to the flow in a porous medium. In the transition region a 

solid fraction function FS is defined as a simple linear 
function of temperature: 

 

 
⎪
⎩

⎪
⎨

⎧

∆−<
∆+≤≤∆−∆∆+−

∆+>
=

)(,0
)()(,)2/()(

)(,1
)(

TTT
TTTTTTTTT

TTT
TF

m

mmm

m

S
                                        (11) 

 
where T∆  has the same meaning as in Eqs. (7) and (8). 
This function takes the value 0 when the temperature is 
below the solidus temperature ( )( TTT m ∆−< , and 
equals 1 for temperatures above the liquidus temperature 
( )( TTT m ∆+> ; in the transition region FS takes values 
between 0 and 1. A temperature dependent porosity 
function is defined as: 
 

 )(1 TFB S−= ,                             (12) 
 

and a solidification source term must be added in the 
Navier-Stokes equation results: 
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C and q in Eq. (14) are constants arbitrarily chosen to 
achieve the desired effect: no modification of the Navier-
Stokes equations in the liquid region (for 

)( TTT m ∆+> ) and 0=u  in the solid region (for 

)( TTT m ∆−< ). In the transition region the flow is 
governed by the Darcy law (see [1] for details). All these 
conditions can be achieved if C is large enough and q is 
small enough; in our calculations we take 8101⋅=C  and 

4101 −⋅=q . Internal radiation in the crystal is not 
considered in the present model.   
 

2.2.3 Boundary conditions 
 
A set of boundary conditions must be formulated for 

each of the governing equations in the model. For the 
thermal problem the boundary conditions are:  
i) Zero temperature gradient normal to the 
symmetry axis. 
ii) Constant temperatures Tinf and Tsup on 
the bottom and respectively upper surfaces of the crucible. 
iii) A smooth step temperature distribution 
given by Eq. (1) on the vertical outer boundary of the 
crucible. Taking 0=pullingv  results in a stationary 
temperature distribution on this boundary. 

Heat transfer from the system to the ambient by 
radiation and convection is not considered in the present 
model.  

For the flow problem the no-slip boundary condition 
is imposed at the contact between the melt and the solid 

wall of the crucible. At the rotation axis, the radial velocity 
is set to zero; this condition allows flow in the tangential z 
direction of the boundary but not in the normal r direction. 

 
2.3 Computing details 
 
The governing equations of the model were solved 

using the finite element method as provided by the 
commercial software COMSOL in the application modes 
General Heat Transfer, Incompressible Navier-Stokes, and 
[19]. For the stabilization of the solution of Navier-Stokes 
equations we have used a combination of GLS streamline 
diffusion and crosswind diffusion methods. We have used 
triangular mesh elements with adaptive mesh refinement. 
The number of triangular elements was different, 
depending on the type of simulation: in the most 
demanding conditions we start with about 20,000 
triangular elements and after applying the adaptive 
refinement procedure the mesh consists of about 370.000 
elements and about 730.000 degrees of freedom.  

A three steps procedure was applied for finding the 
solution in the steady state simulations: i) first, we solved 
the problem on the default mesh; ii) then we used the 
adaptive solver to adapt the mesh; iii) finally, we used the 
parametric solver to decrease the value of T∆  (the half 
width of the mushy region) from a quite large value (30 – 
40 K) down to 2 K. The final solution of such a stationary 
procedure can eventually be used as an initial condition for 
a transient simulation. 

Different kinds of thermal initial conditions were 
tested: a uniform temperature in the entire domain of 
simulation (T0 = 0 or T0 = Tm = melting point temperature), 
or a distribution like T0 = Text(z; t = 0), where Text is given 
by Eq. (1), or a previously calculated temperature field 
when transient simulations are considered. For velocity 
and pressure the initial conditions were 00 =u  and                  
p = 0 respectively.  

The convergence is reached in less than 50 iteration 
(in most of the stationary cases in about 10 iterations). The 
computing time was from about 3 min for steady state 
thermal simulations (without flow) to about 70 min when 
the flow was taken into consideration and the three steps 
procedure described previously is applied (finding solution 
on default mesh + adapt the mesh + parametric decreasing 
of T∆ ). For the transient simulations, when all the 
governing equations must be solved simultaneously, the 
computing time was about 60 min for 300 s of real time 
simulations.  

All the calculations were done on a simple PC with 
dual core processor at 3.6 GHz and with 4 GB RAM. 
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2.4 Properties used in the computation 
 
In our simulations we have used as charge materials 

CaF2 and InSb respectively. The physical properties of 

CaF2 are obtained from Ref. [16], and those of InSb from 
Ref. [20]. They are listed in Table 1 together with the 
properties of the crucible materials.  

 
Table 1. Physical properties of the materials used in simulations. 

 
Property CaF2 InSb 

Solid Liquid Crucible Solid Liquid Crucible 
Melting temperature Tm, K 1696  800  
Latent heat of solidification L, 
J/kg 

3.8 x 105  2.01 x 105  

Thermal conductivity k, W/m K 6.0 0.6 28 4.57 9.23 2.68 
Specific heat Cp, J/kg K 890 890 800 260.42 262.75 1052
Thermal expansion β, 1/K  2.682 x 10-4 3.0 x 10-4  
Density ρ, kg/m3 3180 2594 2600 5760 6470 2200 
Dynamic viscosity η, Pa·s  2.413 x 10-2   1.94  10-3  

 
3. Numerical results and discussions 
 
In order to check the capabilities of the model 

described in the previous sections we performed stationary 
and transient simulations, using CaF2 and InSb as charge 
materials. We have chosen the two materials for our 
simulations because, in our thermal conditions, the solid-
melt interface for CaF2 is convex, while for InSb it is 
concave, when seen from the melt. As usual, the solid-melt 
interface is represented by the melting point isotherm. The 
interface deflection f is defined as the difference between 
the interface location on the axis and at the inner wall of 
the crucible, ),(),0( tRztzf i−= , where iR  is the 
inner radius of the crucible.  

 
3.1 Steady state simulation 
 
In a first set of simulations we have observed the 

changes of the solidification interface due to the 
convection in the melt for a stationary thermal distribution 
applied on the outer wall of the crucible, given by Eq. (1), 
with vpulling = 0, z0 = 0.04 m and z∆  = 0.01 m, 0.02 m, 
0.03 m, and 0.04 m respectively. The temperatures of the 
cold and hot zones of the furnace are Tinf = 1650 K and 
Tsup = 1750 K for CaF2 simulations; when using InSb we 
have taken Tinf = 750 K and Tsup = 850 K, respectively. 
This gives rise to the same values of the thermal gradients 
for the two charge materials, Tδ = 50.0 Kcm-1,                             
25.0 Kcm-1, 16.66 Kcm-1, and 12.5 Kcm-1 respectively. 
The first three values of these thermal gradients are larger 
than the values usually used in Bridgman systems but in 
this study we only intend to check the capabilities of the 
model and not to provide a quantitative validation of it.  

Figs. 2.(a) – (b) shows the solid-melt interface without 
flow and with flow for CaF2 and InSb respectively, when 
using the thermal gradient Tδ = 12,5 Kcm-1. In these 
figures we recognize the well known fact that the 
convection in the melt flattens the solid-melt interface. 
When using the other three thermal gradients the effect on 
the solidification interface is similar. The values of the 

interface deflection for all the thermal gradients, together 
with the corresponding maximum velocities in the melt, 
are presented in Table 2. These results show that the 
thermal boundary conditions (i.e. thermal gradients) used 
in these simulations have a weak effect on the interface 
deflection.  

 

 
Fig.  2.  Solid - melt  interface  for  CaF2 (a) and InSb 
(b), without and with flow, for 

Tδ = 12.5 Kcm-1 (color 
legend: blue = solid; red = liquid; rainbow = mushy 

zone). 
 

As was pointed out by Crochet et al. [9], Lan et al. 
[15], and Boiton et al. [9], the maximum velocity of the 
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flow in the melt varies nearly linearly with respect to the 
interface deflection. The results of Boiton et al. [9] refers 
to the solidification of GaSb in a vertical Bridgman 
furnace and in a series of transient state simulations these 
authors obtained a linear increase of the maximum 
velocity with respect to the interface deflection. GaSb has 
similar physical properties to InSb, and the solidification 

interface in the study of Boiton et al. was also concave, 
like in our simulations when using InSb. Apparently, our 
results for InSb indicate a similar linear increase of the 
maximum velocity of the flow with the interface deflection 
but this conclusion could be an exageration because the 
values of the interface deflection are very close to 
eachother

 
Table 2. Interface deflection and maximum velocity versus thermal gradient for the steady state simulations. 

 
Convection Thermal 

gradient 
(Kcm-1) 

CaF2 InSb 
Interface deflection 

(mm) 
Maximum 

velocity (ms-1) 
Interface deflection 

(mm) 
Maximum 

velocity (ms-1) 
No 50.0 3.38 - 0.69 - 
No 25.0 3.12 - 0.66 - 
No 16.6 3.01 - 0.65 - 
No 12.5 2.91 - 0.64 - 
Yes 50.0 2.3 0.49 x 10-3 0.63 2.05 x 10-3

Yes 25.0 2.4 0.34 x 10-3 0.56 1.65 x 10-3 
Yes 16.6 2.5 0.25 x 10-3 0.55 1.30 x 10-3 
Yes 12.5 2.5 0.19 x 10-3 0.54 1.03 x 10-3 

 

 
Fig. 3. Solid-melt interface for InSb, with flow, for             

Tδ  =  50.0 Kcm-1 (a),  25.0 Kcm-1  (b),  16.66 Kcm-1 (c), 
and 12.5 Kcm-1 (d). 

In the case of the CaF2 charge, the interface deflection 
has larger values than those obtained for InSb and the 
maximum velocity of the flow seems to decrease nearly 
linearly with respect to interface deflection. But, once 
again, we cannot say at this moment that this conclusion is 
a right one because the values of the interface deflection 
are very close to eachother. We can say with certainty that 
the maximum velocity of the flow is decreasing when the 
thermal gradient is decreasing by using a symmetric 
enlargement of the adiabatic zone (fixed z0 and larger 

z∆ ). At the same time, for large thermal gradients the 
center of the flow cell is close to the solidification 
interface; by decreasing the thermal gradient the center of 
the flow cell is moving away from the solidification 
interface (Fig. 3). This conclusion is restricted to our 
idealized model and cannot be extrapolated to real 
Bridgman furnaces; in real furnaces the thermal gradients 
and the position of the adiabatic zone are changed in an 
asymmetric manner by using crucible holders of different 
geometries and / or moving screens.    

In a second set of steady state simulations we have 
used only InSb as charge material and one single value for 

z∆ , namely 01.0=∆z m, but we changed the 
temperatures of the cold and hot zones of the furnace. 
These two temperatures can be changed symmetrically 
with respect to the melting point temperature of the charge 
material (i.e. Tinf  is decreased and Tsup  is increased with 
the same amount, such that Tm – Tinf = Tsup – Tm), or 
asymmetrically (i.e. Tm – Tinf ≠ Tsup – Tm). Some results 
obtained in the symmetrical case are presented in Table 3. 
It seems that using our model the interface deflection 
remains practically unchanged when the axial thermal 
gradient becomes larger than about 50 Kcm-1. 
Nevertheless, the axial profiles of the flow velocity in the 
melt show an increase of the maximum velocity in the two 
flow cells with the thermal gradient; moreover, the main 
maximum velocity changes its position and shifts upwards 
(its z coordinate increases) (Fig. 4).  
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Table 3. Interface deflection and maximum velocity of the flow in the melt for symmetrical changes of the cold and hot zones 
temperatures. 

 
 ∆z (m) Tm (K) Tinf (K) Tsup (K) Thermal gradient 

(Kcm-1) 
Interface 
deflection (mm) 

Maximum 
velocity (ms-1) 

 
 
0.01 

 
 
800 

600 1000 200 0.67 2.17 x 10-3 
700 900 100 0.67 2.15 x 10-3 
750 850 50 0.63 2.05 x 10-3 
780 820 20 0.62 1.7 x 10-3 

 

 
 

Fig. 4. Velocity profile in the melt as a function of the z 
coordinate for the same thermal gradients as in Table 3. 

 
Fig. 5. Solid-melt interface for InSb, with flow, for 
asymmetrical changes of the cold and hot zones 
temperatures: (a) Tinf  = 600 K, Tsup = 820 K;                  
(b) Tinf  = 700 K, Tsup = 820 K; (c) Tinf  = 780 K,Tsup = 820 K; 
(d) Tinf  = 780 K, Tsup = 900 K;(e) Tinf  = 780 K, Tsup = 1000 K. 

Fig. 5 presents the results obtained by varying 
asymmetrically the temperatures of the cold and hot zones 
of the furnace. For a given value of the temperature in the 
hot zone but not very far from the temperature of the 
melting point Tm there is a threshold value Tinf,lim such that 
for Tinf < Tinf,lim the interface is convex, and for Tinf > Tinf,lim 
the interface is concave. If the temperature of the cold 
zone is not far bellow the temperature of the melting point 
and we increase the temperature of the hot zone, the 
solidification interface remains concave but its defection 
changes from small to large values. In the same time, the 
asymmetric variation of the temperatures in the cold and 
hot zones has an important influence on the position of the 
solidification interface and the dimensions of the two flow 
cells, as seen in Figure 5. We can understand these 
features if we have in mind that lowering Tinf, for example, 
but keeping unchanged the form (width) of the thermal 
distribution Text(z,t) the position of the melting point 
temperature Tm in this thermal profile shifts upwards. 
Consequently, the solidification interface position with 
respect to the symmetric thermal distribution shift upward 
as well. Interestingly, as seen from Fig. 5.(a) – (e), the 
flow cells system changes when passing from a concave 
solidification interface to a convex one: the lower flow cell 
disappears above flat or convex interfaces. Our results are 
in agreement with those reported by other authors (see, for 
example, Lan et al. [15]) and show that the axial thermal 
distribution on the outer boundary of the ampoule is a key 
factor to interface control.  
 

3.2 Transient state simulations 
 
In order to demonstrate the effect of growth speed on 

the solid – melt interface we performed a series of 
transient state simulations.  

Figs. 6.(a) – (b) show the dynamic evolution of the 
interface deflection in the case of CaF2 for two different 
pulling rates, vpulling = 10x10-6 m/s and 20x10-6 m/s 
respectively; the other constants in the thermal profile 
given by Eq. (1) are: z0 = 0.04 m, z∆   = 0.01 m,                    
Tinf = 1650 K and Tsup = 1750 K. The initial conditions are 
obtained by setting a stationary thermal distribution on the 
outer wall of the crucible, Text(z; t = 0). It is interesting to 
note that, in both cases, a constant interface deflection is 
reached after about 100 s for vpulling = 10x10-6 m/s and 
respectively 200 s for vpulling = 20x10-6 m/s. Moreover, the 
interface deflection for vpulling = 20x10-6 m/s is about half 
of that obtained for vpulling = 10x10-6 m/s. At the same time, 
as shown in Fig. 6(a), the flow cell in the melt does not 
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change its shape in time and the maximum velocity value 
remains at about 1.6x10-4 m/s for vpulling = 10x10-6 m/s and 
respectively 1.35x10-4 m/s for vpulling = 20x10-6 m/s. These 
observations allow us to say that a near steady-state 
operation can be obtained in a very short time from the 
beginning of the pulling.  

 

 
(a) 

 
(b) 

Fig. 6. Effect of the pulling velocity on the interface 
deflection of CaF2: (a) snapshots with solid-melt 
interface  and  flow  cell; (b)  interface deflection vs. time  
                             for two pulling velocities.  

Similar results, not shown here, are obtained with our 
model when the charge material is InSb and the interface 
is slightly concave. In this case the interface deflection 
increases very little, from about 0.63 mm at t = 0 to about 
0.68 mm in the steady-state that is reached after about 600 
s, when using the growth rate vpulling = 10x10-6 m/s. Due to 
the small variation of the interface deflection, we have not 
observed a significant change with time of the shape of the 
flow cells in the melt, even for the case of InSb. 

 
 
4. Conclusions 
 
We have performed a local modeling of the 

solidification of CaF2 and InSb in an idealized vertical 
Bridgman configuration. The thermal field in the system 
and the flow in the melt were calculated by performing 
steady-state and transient simulations. From the 
calculations presented in our paper it follows that during 
the solidification process the interface shape changes with 
relation to the variations of the thermal boundary 
conditions seen by the crucible. Changing the relative 
position of the solidification interface by decreasing the 
cold zone temperature or by increasing the hot zone 
temperature is very effective for interface shape control. 
The interface shape can be also be changed by varying the 
growth speed (pulling rate) and this fact can be helpful for 
obtaining a near steady-state operation with a nearly flat or 
slightly convex interface.  

 A further step in this study will be to incorporate 
in the model the internal radiation in the crystal and the 
heat transfer by convection and radiation from the system 
to the ambient. After than we will be able to compare the 
results of the simulations with those obtained in some 
crystal growth experiments and to optimize the heat 
transfer in real vertical Bridgman systems. 
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